
High Performance Computing Platforms

Step4 CA0603: Prediction and speculation

http://archlab.naist.jp/Lectures/ARCH/ca0603/ca0603e.pdf

Copyright © 2022 NAIST Y.Nakashima

1

http://archlab.naist.jp/Lectures/ARCH/ca0603/ca0603e_video.pdf
http://archlab.naist.jp/Lectures/ARCH/ca0603/ca0603e_video.pdf
http://archlab.naist.jp/Lectures/ARCH/ca0603/ca0603e_video.pdf

Download one of following templates, fill in by handwriting,
and

Send PDF (scan/photo)
To: naist.report@gmail.com

Subject: 4092-xxxxxxx (student ID)

http://archlab.naist.jp/Lectures/ARCH/ca0603/ca0603e.docx

These links are in http://archlab.naist.jp/Lectures

2

mailto:nakashim@is.naist.jp
http://arch.naist.jp/Lectures/ARCH/ca0603/ca0603e.docx
http://archlab.naist.jp/Lectures

3

Prediction and Speculation
for Instruction Stream

4

Instruction cache prefetch
Background

Instruction supply speed is important to maximize ALU usage
Even branch is exist, how to supply instruction from memory?

Topics
Prefetch before cache miss is actually occurred
Timing and Preciseness are important (Neither too early or too late)

Memory address Length Memory address Length

5

Instruction cache prefetch (Various ideas)

Avoiding Next Line Prefetching

Next prefetch flag is added in every line
When cache miss is occurred, set this frag in the line to ON
When flag in next line is ON, do not prefetch and reset the flag to OFF

Recode “next” line in additional table
Too late decision for modern “too slow” main memory

More aggressive mechanisms are required

6

Instruction cache prefetch (Various ideas)

Instruction cache

Instruction cache

To next stage

To next stage

Miss history information

Predict next line

When miss occurs, prefetch next lines

7

Instruction cache prefetch (Various ideas)

Instruction cache

To next stage

Actual branch prediction may make mistake
Wrong prediction is not always useless
If mispredict at beginning or end of loop, total performance may be
improve
If compiler minimize conditional branches, more effective
Some architecture (ex. IA64) has dedicated prefetch instruction

Effective prefetch relies on precise branch prediction

Branch predictor

Pattern History Table Pattern History Table8

Static prediction
backward branches should be end of loop, then predict as taken
If instruction has “hint bit”, which set by compiler, just follow it

Dynamic prediction

Branch prediction (Ideas of Branch direction prediction)

Branch history

Branch inst addr.Branch inst addr.

XOR in Gshare

Prediction for each branchPrediction for each branch

Prediction
00,01 not taken
10,11 taken

Update
not taken -> decrement
taken -> increment

Record history for each
branch instruction

Record history for each
branch sequence

9

Branch prediction (How to predict return address)

Function call
sub(); /*call function */
:
return; /* return to prev func */

Ex. ARM architecture
bl sub; /*save return addr in lr */
:

sub:
:
return; /* return to lr */

call

call

…

…

…

…

function

10

Function call and stack frame

Global var.
func1 data

:
func1 data
func1 data

P
func1 data

Global var.
arg 1

:
arg 4

func1 data
P

func5 ret addr

Global var.
func5 data

:
func5 data
func5 data

Q
func5 data

Global var.
ret value

:

func1 data
P

func5 ret addr

Global var.
func1 data

:
func1 data
func1 data

P
func1 data

Global var.

free area

func1 local var
(save area 1)
func1 ret addr

P

Global var.

free area

func1 local var
(save area 1)
func1 ret addr

P

Global var.

free area

func1 local var
(save area 1)
func1 ret addr

func5 local var
(save area 2)
func5 ret addr

P

Q

Global var.

free area

func1 local var
(save area 1)
func1 ret addr

P

Global var.

free area

func1 local var
(save area 1)
func1 ret addr

Pda
ta

 m
em

or
y

r0
r1
:

r4
r5
r6
r7

(a) func1
executing

(b) func5
just called

(c) func5
executing

(d) func5
returning

(e) func1
executing

sa
ve

 1

sa
ve

 2

re
st

or
e

2

ca
lle

e
sa

ve
ca

lle
r s

av
e

11

Branch prediction (How to predict return address)

For return, return address is saved in main memory, it is available
When load it from main memory.

For PC relative branch, branch target is available at decode stage

Due to long latency of main memory, special mechanism is necessary

Save return address in special register (Return Address Stack)

When Call is decoded, push next address
When Return is decoded, pop and use it as a predicted address
When Return is executed, check correctness. If mismatch, then
misprediction (need recovery)

12

Background

Trace cache

Branch causes fragmentation of instruction cache
When recording, can we defragment it?

Topics
If sequence of basic block is same, we can reuse it
What should we record?

Instruction buffer Instruction buffer

13

Recode branch history in the trace

Trace cache

Identify entry with start address and branch pattern

Max number of basic blocks is limited by bit length of branch field
Max number of instructions is limited by entry length of trace cache

By including branch pattern, multiple entries that have same start
address can be registered

14

Multipath execution

Background
Why we predict one of taken or not taken?
Why not execute BOTH?

Topics
Execution is tree structure. Branch is node
Which branch should we executed

15

Multipath execution

Multipath execution is effective for non-predictable branch

Important for guaranteeing response time in embedded system

Use additional PC for prefetch. Each PC fetch different instruction
stream simultaneously
Unlike thread speculation (explain later) , data is not predicted

Extended super scalar
Chip Multi Processor (CMP)

See references for more detail

16

Prediction and Speculation
for Data (Operand)

17

Data cache prefetch

Background
Same as instruction, data supply is important for good performance
Some instructions are sequential, but limited data is sequential
If programmer knows data location and reference order, software
prefetching is effective

Topics
How to prefetch data before cache miss
Same as instruction, timing and preciseness is important

Prefetch only evident data is too pessimistic
Prefetch too much causes contention
Too early, evict before access
Too late, no effect

18

Data cache prefetch (software approach)

Software prefetch
Specific mechanism which can prefetch while cache miss is required
Transfer data from memory to cache for specified address
Some processors equip prefetch dedicated buffer

For array data
If 2 arrays are used, one should be always in cache by loop
transformation, the other is aided by prefetch

For indexed array data (index is given by other array)
prefetch index array
prefetch main array
prefetch index array again (main array may evict index array)

19

Data cache prefetch (software approach)

Data structure with pointer

Idea 1 : prefetch all possible candidate
Cannot prefetch the data after the next

Idea 2 : relocate frequent access pattern to sequential
Hard to keep it sequential when add/delete some node

Idea 3 : Add prefetch pointer named Jump Pointer
Cannot prefetch first node

Idea 4 : Add dedicated pointer array for prefetch
Hard to maintain this array

20

Data cache prefetch (Hardware approach)

Hardware prefetch
Predict future access by access pattern history

Add dedicated buffer
Prefetch sequential or fixed interval (stride) from main memory

Create pattern history table
Effective for indexed array or pointer chain (when patter is same)

If detect pointer value is loaded, prefetch it
Check similarity of past access address
Cannot prefetch array data

21

Address prediction

Background
If dependency between load/store instructions can be detected,
further speed up is possible by reordering
When load will be executed after write, effective addresses are
different load instruction can be executed before store. Following
instructions can be started

Topics
Dependency between registers can be easily detected in decode
stage
Dependency between memory access addresses can be detected
after address calculation
How to predict address dependency precisely?

22

Address prediction (Deterministic)

Compiler optimization

Pre-execution by hardware

Pre-execution by helper thread

Compiler re-order load/store instructions by static analysis

Add special hardware that pre-execute only address calculation
related instructions

Compiler generate additional instructions that only calculate
memory address and pre-execute it

23

Address prediction (Speculative)

Without history table

With history table

Predict next address from previous access address

Indexed by part of PC
Last Value expect repeat access
Stride Based expect same distance
Context Based use global history
Hybrid combination of several method

24

Data speculation

Background
If not just address but load data is predictable, even cash miss occurs
following execution can be continued
Not only exact value prediction but data dependency prediction is
also part of data speculation

Topics
Since answer of branch prediction is taken or not taken, even
random prediction can correctly predict 50% of branches. Data
prediction have to predict multiple bit
Miss penalty of data misprediction is larger than just waiting

Miss penalty may cause performance degradation
No commercial processor has been released
Let’s take a general view of research of data speculation

25

Data speculation (data prediction)

Same as address prediction, predict with history table

Indexed by part of PC
Last Value expect repeat value
Stride Based expect same distance
Context Based use global history
Hybrid combination of several method

Miss penalty is huge, low precision predictions should be suppressed

Precision should be predicted

26

Data speculation (dependency prediction)

For out-of-order execution, exact address is not required
Only address matching information is required
If effective address is not same, load and store can be reordered

If two addresses ware same in previous execution, there address
will be same in next execution

If two addresses are same, store data can be bypassed to following
load instruction before memory access

Dependency prediction is the most important topic for speculative
multi threading (see reference)

27

Speculative execution can be divided into …
Instruction prefetch and branch prediction
Memory address prediction
Data prediction

Researcher proposes “promising” speculation
In general, to get large performance overhead, hardware will be
complicated and miss penalty will be large

Opportunity of hardware speculation is limited
Software support will be a key for further improvement

Summary

Compiler must guarantee correct execution
Aggressive speculation is not easy

28

That’s all for today

	スライド番号 1
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6
	スライド番号 7
	スライド番号 8
	スライド番号 9
	スライド番号 10
	スライド番号 11
	スライド番号 12
	スライド番号 13
	スライド番号 14
	スライド番号 15
	スライド番号 16
	スライド番号 17
	スライド番号 18
	スライド番号 19
	スライド番号 20
	スライド番号 21
	スライド番号 22
	スライド番号 23
	スライド番号 24
	スライド番号 25
	スライド番号 26
	スライド番号 27
	スライド番号 28

