

高性能計算基盤

 High Performance Computing Platforms-#6

Analog Computing

Renyuan Zhang 2020/06/11

Lab. of Computing Architecture

Efficient & Smart Processors in IoT

Smart chips: VLSI implementations of machine learning (on-chip learning)

研究室の全体像

Accelerating AI algorithms in Post-Moore era

How about Analog-like?

Represent ``data" by various ``carriers" → analog, probability, time, oscillation, etc

Opportunities for low power

High speed by Parallelism

There are a lot of opportunities for:

(very) low power and (very) high speed

This is what is needed for current digital system

Cons: Limited accuracy

Programmability !!! Expertise

Power dispassion

Power of VLSI chips: ~ sub-watt Lamps: ~ 10-watt Home-area machines: ~ 100-watt Motors: ~ 1000-watt Manufacturing Machines: ~ 10000-watt

Why we are not satisfied by such a tiny power order?

Power dispassion

Reason 1: unplug devices

portable; body area (wearable); wireless; space exploration; bioembedded.

Hearing aids

Power dispassion

Reason 2: heating!!!

- Speed and reliability: MOS-FETs are extremely temperature dependent devices
- Life-time

Generally, smaller sizes are always pursued due to:

- 1. Inner-connection
- 2. Die yield

1. Inner-connection

2. Die yield

How many chips are available?

die yield = $(1 + (defects per unit area \times die area)/\alpha)^{-\alpha}$

- Example
 - wafer size of 12 inches, die size of 2.5 cm², 1 defects/cm², $\alpha = 3$ (measure of manufacturing process complexity)
 - 252 dies/wafer (remember, wafers round & dies square)
 - die yield of 16%
 - 252 x 16% = only 40 dies/wafer die yield !

- Die cost is strong function of die area
 - proportional to the third or fourth power of the die area???

Outline

What/Why/Why_not is analog computing

- Classic textbook type analog computing: OPAMP-based
- Socillation driving analog
- Machine learning driving analog

What is analog computing

Error sensitive tasks

$$253 \div 11 = ?$$

10010111 + 11011 = ?

Possible but hard

Faster Reliably

Error tolerant tasks

Is he a bad man?

Digital V.S. Analog Computation

Digital:

All energies are utilized to eliminate Noise

Strong Non-linearity of digital circuits can eliminate Noise

Digital V.S. Analog Computation

■Analog:

- We cannot eliminate noise
- Linearity of Amplifier is important
- Audio Amplifier: all energy is used to guarantee linearity

=> There is certain limitation in terms of computation accuracy

"Brain-like Computing" aided by analog

■Algorithms must be "Error tolerant" inherently

(A lot of opportunities for ANALOG computing)

▲ Prob

Computational accuracy

D = Similarity Meas. (Euclidean, Manhattan, Gaussian.....)

Circuit/Device inaccuracy

 $D = \exp(\sum_{i=1}^{n} d_i)$ n: dimensions

Element similarity-evaluate circuit

 $d_{i} = \parallel \mathbf{T}_{i} - \mathbf{X}_{i} \parallel$

Number of dimensions

Algorithms allowable maximum:

 $\sigma_{\rm max} = 30\%$

Circuit / Device

Number of dimensions

Algorithms allowable maximum: $\sigma_{max} = 30\%$

Circuit / Device

Choose analog if you are sure you can sacrifice something in your specific tasks

 $\sigma(D) = \sqrt{n\sigma(d_i)} + \sigma(\exp)$ $\rightarrow \sigma(D) + \Delta(samples) \le 30\%$ $\rightarrow \sqrt{n \cdot 2\%} + 5\% + \Delta(samples) \le 30\%$ $\rightarrow 100, \text{ when } \Delta(samples) \approx 5\%$

Outline

- What/Why/Why_not is analog computing
- Classic textbook type analog computing: OPAMP-based
- Socillation driving analog
- Machine learning driving analog

Candidate (1) OPAMP-based analog computing

Classic, textbook-like, easy, convenient

Original idea of OPAMP: Even tiny difference on +/- will be amplified to infinitely large Thus, OPerational AMPlifier

To analyze an op-amp feedback circuit:

- Assume no current flows into either input terminal
- Assume no current flows out of the output terminal
- Constrain: $V_+ = V_-$

Non-Inverting Amplifier Analysis

Derivate it = 3 min.s

Op-Amp Buffer

Problem of this

- Please remember, in analog circuits
 - 1. Noise
 - 2. Mismatch (what you get is NEVER what you expect)
 - 3. Static power
 - 4. You can almost NEVER store info.
 - 5. Not programmable

Outline

- What/Why/Why_not is analog computing
- Classic textbook type analog computing: OPAMP-based
- Solution driving analog

Machine learning driving analog

Plain analog circuits are not the hero of computational VLSIs.

Synchronization:

Finally, in-phase or out-of-phase

Spin Torque Oscillator (STO)

What happens when we interfere millions ~

Emulate the behavior of STO

Emulate the **beinatoioque Stal**lator (STO)

How to use oscillation for recognition problems?

Phase Keying Scheme

phases are used to represent information

Frequency Keying Scheme

frequencies are used to represent information

To represent a "pattern"

Pattern 2

Phase Keying Scheme

To memorize a "sample"

To memorize a "sample"

Network

Step 1: Read in input

Template memorized here. (two templates, 25-bit for each one)

Network

Template memorized here. (two templates, 25-bit for each one)

Test

Input

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

## Templates

![](_page_45_Figure_4.jpeg)

	~~~	~~~	

Initial (read in the input)

Result (phase shifted by the mixer)

Frequency Keying Scheme

To represent a "pattern", by frequency

129MHz	9MHz	12MHz
37MHz	229MHz	
98MHz		

Frequency Keying Scheme

To match a "pattern", by frequency

Result

Outline

- What/Why/Why_not is analog computing
- Classic textbook type analog computing: OPAMP-based
- Socillation driving analog
- Machine learning driving analog

Complex functions: two expensive to exactly calculate \rightarrow retrieve them by regression

It is special scheme of regression: Function is known Step 1: sampling take samples from target function

$(x_1, x_2, \dots, x_{n-1}, x_n) = (0, 0, \dots, 0, 0)$	f = 0.1
$(x_1, x_2, \dots, x_{n-1}, x_n) = (0.1, 2, \dots, 1.6, 3)$	<i>f</i> = 2.1
$(x_1, x_2, \dots, x_{n-1}, x_n) = (1, 3, \dots, 0.8, 0)$	f = 0.9

Step 2: learning Construct the regression network by using the samples

Step 3: use

receive any new variable, predict result

SVR (with Gaussian kernel) is high performance regression algorithms

Only key samples remains, called "Support Vectors" (SVs) Function is retrieved by combination of kernels around SVs

We just need to know: which ones are SVs Corresponding ($\alpha_i^* - \alpha_i$)

Purpose: reduce SVs to a small and constant number \rightarrow friendly to HW implementation

Retrieve 2-operand calculations by 20 SVs

Analog Calculation Unit (ACU): Calculate analog functions in real-time by regression

Analog Calculation Unit (ACU): Calculate analog functions in real-time by regression

Circuit simulation results of ACU

Circuit simulation results of ACU

2-D examples (2-operand calculation) $f(x_1, x_2) = \sqrt{x_1^2 - x_2^2}$

Average error

Our

20

0.5%

4.3%

variable Variable				
		Original SVR		
	# of SVs	98		
	Error theoretical	0.03%		
result	Error circuit	4.1%		

Comparisons on hardware resource

	4-bit ALU	4-bit FPGA	MVL-FPGA	NN-trans.	This work
Radix	Binary	Binary	Hex	Binary	Analog
Bits/Error	4	4	1-hex(=4-bit)	Error~44.8%	Error~7%
Function	Simple	Arbitrary	Arbitrary	Arbitrary	Arbitrary
Operands	2	2	2	1	9
# of Tr.s	>10000	12288	5808	>3000+CPU	5000
Speed	Multi-cycle	Real-time	Real-time	Multi-cycle	Real-time

Simpler algorithms? NN-regression in silicon

Idea:

Similar to previous ACU, implement regression algorithms by HW. This time, neural-network in analog.

Simpler algorithms? NN-regression in silicon

Current progress

Comparison of three analog computing

	Merit	Demerit
OPAMP based (textbook-like)	Easily understandable; Rich IP;	Static power; Not programmable; R/C/L hungry; Noise/Varitions
Physics Computing (Oscillation etc., same story for Quantum)	Interconnection free; Potential of super small/lower_power/fast;	Func. Limited (specified?); Expertise hungry; Expensive; Noise/Variations
Programmable ACU (powered by ML?)	Programmable; Expertise free;	Noise/Variations; Static power;

Application example

SVM in tracking

Analog SVM chip was employed

Application example

SVM in tracking **Measurement** Training target Activating 1µs DAC sample _____ NAMES AND ADDRESS OF THE OWNER OF Data input flag Classification MANNA N result 6 8 Candidate images 2 5 6 3 ____**_**___**_**__

End

Thank you very much.