

高性能計算基盤

 High Performance Computing Platforms-#7

Stochastic Computing

Renyuan Zhang 2020/06/18

Lab. of Computing Architecture

Road-Map of emerging tech.s for computing

Outline

What is stochastic computing (SC)

- Mechanism of SC
- Elements of SC
- Implementation of SC
- Time based stochastic computing (TBSC)
 - Mechanism of TBSC
 - Hybrid TBSC
 - Analysis

Complexity of computational unit

A simple review of digital type ALU (arithmetic logic unit) → core part = adder

To shrink calculator's size

Again, reconsider the data representation: try to use something like ``probability"

Considering the probability of pulse-appearance:

$$P_A = \frac{9}{20} = 0.45$$

 $P_B = \frac{8}{20} = 0.4$

Similar but different from biosignal: irrelevant to timing, positioning, and strength...

For ``B", it is incorrect somehow; But it loos like no impact to the representation. Is it true?

Definition

Given a bit stream ``X" with length of N: ``1" appearance counting = N1; ``0" appearance counting = N0. $P_X = N_1/N$ or shortly, $X = P_X$ This bit stream is called stochastic number (SN)

Property 2-1

- 1. The SN representation is NOT unique;
- 2. Only total counting indicates info., \rightarrow position&pattern = meaningless;
- The SN with N bit only represent the number in set {0/N, 1/N, 2/N,..., (N-1)/N, N/N} in total of N+1 numbers (= resolution);
- 4. Range = [0,1] (but extendable by following)

Format to address the real number domain

Format	Number value	Number range	Relation to unipolar value p_X
Unipolar (UP)	N_1/N	[0, 1]	p_X
Bipolar (BP)	$(N_1 - N_0)/N$	[-1, +1]	$2p_X - 1$
Inverted bipolar (IBP)	$(N_0 - N_1)/N$	[-1, +1]	$1-2p_X$
Ratio of 1's to 0's	N_{1}/N_{0}	$[0, +\infty]$	$p_X/(1-p_X)$

Here, the inaccuracy is observed over data-representation itself \rightarrow resolution

Definition

Given a bit stream ``X" with length of N: ``1" appearance counting = N1; ``0" appearance counting = N0. $P_X = N_1/N$ or shortly, $X = P_X$ This bit stream is called stochastic number (SN)

Quiz 2-1 Complete it into full range = 5 min.s

Bit- stream	UP	BP	IBP	Ratio
00000000	0	-1	+1	0
00000001	1/8	-3/4	+3/4	1/7
00000011	2/8	-2/4	+2/4	1/3
00000111				
00001111				
00011111				
00111111				
01111111				
11111111				

To calculate the ``probability"

Given two stream of A and B, the logic gate ``AND" performs multiplication of Y=AxB

Outline

What is stochastic computing (SC)

- Mechanism of SC
- Elements of SC
- Implementation of SC
- Time based stochastic computing (TBSC)
 - Mechanism of TBSC
 - Hybrid TBSC
 - Analysis

Elements of stochastic computing HW

Generating SN

It is different from generating random number. More than that.

Elements of stochastic computing HW

Generating SN

``weight" is attached to final bit stream from the binary radix. Quiz 2-2: explain why

Signal	Bit-stream	Value
L_3	00000000111111111	8/16
L_2	0000111100001111	8/16
L_1	0011001100110011	8/16
L_0	010101010101010101	8/16
W_3	0000000011111111	8/16
W_2	0000111100000000	4/16
W_1	001100000000000000	2/16
W_0	0100000000000000000	1/16
x	01110000111111111	11/16

Elements of stochastic computing HW

Calculate SNs

ANG gate is used for multiplication; summation would be = ?? OR gate??

Outline

What is stochastic computing (SC)

- Mechanism of SC
- Elements of SC
- Implementation of SC
- Time based stochastic computing (TBSC)
 - Mechanism of TBSC
 - Hybrid TBSC
 - Analysis

Complex func.

Linear combination is achieved by multiplier and adders

But, for the complex NON-linear functions, the simple implementations are insufficient. The ONLY option is to ``approximate" them by simple items.

- 1. Item expansion technologies: arbitrary non-linear function is approximated by, for instance, Taylor Expansion, Bernstein Polynomial etc.
- 2. Machine learning regression: refer to previous lecture
- 3. Special tech.s for stochastic

Complex func.

Non-linear functions are approximated by Bernstein Polynomial

In the mathematical field of numerical analysis, a Bernstein polynomial, named after Sergei Natanovich Bernstein, is a polynomial in the Bernstein form, that is a linear combination of Bernstein basis polynomials. [wikipedia]

$$f(x) \approx \sum_{i=0}^{k} b_k B_{i,k}(x) \text{ where } B_{i,k}(x) = \binom{k}{i} x^i (1-x)^{k-i}$$

for SC,
$$Z = \sum_{i=0}^{k} b_k B_{i,k}(X)$$
 where $B_{i,k}(X) = \binom{k}{i} X^i (1-X)^{k-i}$

Where degree k controls the accuracy of approximation. (see right)

0.8

0.4

0.2

0.4

0.6

0.8

Complex func.

Special technology by finite state machine (FSM) → ONLY very few func.s are available

Summary

	Good	Bad
Circuit size and power	Tiny arithmetic components	Many random number sources and stochastic- binary conversion circuits
Operating speed	Short clock periods Massive parallelism	Very long bit-streams
Result quality	High error tolerance Progressive precision	Low precision Random number fluctuations Correlation-induced inaccuracies
Design issues	Rich set of arithmetic components	Theory not fully understood Little CAD tool support at present

Error (inaccuracy)

Error type	Why	How
Approximation, Quantization	Non-linear target functions, Low-degree polynomial approximation, Low-precision constant number generation	Increase polynomial degree, Increase number of bits in constant number generation
Random fluctuation	Inherent randomness, Short bit-stream length	Increase bit-streams length, Use deterministic or low-discrepancy sequences
Insufficient randomness	High error tolerance Progressive precision	Increase random sources, De-correlate correlated signals, Use better number sources (larger LFSRs)
Soft errors	Environmental noise, Component variability,	Use circuit-level error-resilience techniques,

Outline

What is stochastic computing (SC)

- Mechanism of SC
- Elements of SC
- Implementation of SC

Time based stochastic computing (TBSC)

- Mechanism of TBSC
- Hybrid TBSC
- Analysis

implementation

	*	Proposed Circuit
Technology	45nm	180nm
Strategies	time-based values	time-based values
Components (of SNG)	Comparator Ramp Generator Clock Generator	Current-starved Oscillator Neuron-MOS Inverter PWM Detector (optional)
Input	Analog Current	Analog Voltage
Speed (ns)	7 (mul.) 7 (add.)	7 (mul.) 7 (add.)
Accuracy (%)	98.6 (mul.) 98.6 (add.)	96.6 (mul.) 96.7 (add.)
# of trans.	967 (mul.) 1512 (add.)	140 (mul.) 210 (add.)
Energy (pJ)	4.5 (mul.) 6.8 (add.)	1.8 (mul.) 2.5 (add.)

[*] H. Najafi et al., Time-encoded values for highly efficient stochastic circuits, IEEE Trans. VLSI Systems 2017

Outline

What is stochastic computing (SC)

- Mechanism of SC
- Elements of SC
- Implementation of SC

Time based stochastic computing (TBSC)

- Mechanism of TBSC
- Hybrid TBSC
- Analysis

Key idea:

In stochastic computing, we concern ``probability". Then, why always use discrete fashion?

Hybrid: use continuous probability distribution instead of discrete Bernoulli test; integral instead of bit counting

Merits: short time; infinite range; easy for summation; light SNG

Demerit: almost no theory; circuit design expertise

implementation

Outline

What is stochastic computing (SC)

- Mechanism of SC
- Elements of SC
- Implementation of SC

Time based stochastic computing (TBSC)

- Mechanism of TBSC
- Hybrid TBSC
- Analysis

Error analysis

X1*w1+X2*w2 contains four operands, full pattern test is impossible. Thus, sampling.

Error analysis

Errors also come from the analog side: process and temperature variations etc.

End

Thank you very much.