高性能計算基盤

－High Performance Computing Platforms－ \＃7

Stochastic Computing

Renyuan Zhang 2020／06／18

NAIST

Road-Map of emerging tech.s for computing

Inventing new topologies and algorithms

Challenges:

- Almost no Mathematical fundamentals
- How to make good use of Appr. Comp.

Key Candidates:

- Programmable Analog Computing
- Multi-Domairstochastic Computime
- New-device + Neuromorphic

Platform:

Hybrid Coarse-Grained Reconfigurable Array
(CGRA)

Outline

$>$ What is stochastic computing (SC)

- Mechanism of SC
- Elements of SC
- Implementation of SC
> Time based stochastic computing (TBSC)
- Mechanism of TBSC
- Hybrid TBSC
- Analysis

What is stochastic computing

Complexity of computational unit
A simple review of digital type ALU (arithmetic logic unit) \rightarrow core part $=$ adder

What is stochastic computing

To shrink calculator's size
Again, reconsider the data representation: try to use something like "probability"

Considering the probability of pulse-appearance:

$$
\begin{aligned}
& P_{A}=\frac{9}{20}=0.45 \\
& P_{B}=\frac{8}{20}=0.4
\end{aligned}
$$

Similar but different from biosignal: irrelevant to timing, positioning, and strength...

For " B ", it is incorrect somehow; But it loos like no impact to the representation. Is it true?

What is stochastic computing

Definition

Given a bit stream " X " with length of N : " 1 " appearance counting $=\mathrm{N} 1$; " ${ }^{\prime} 0$ " appearance counting $=$ N0. $P_{X}=N_{1} / N$ or shortly, $X=P_{X}$
This bit stream is called stochastic number (SN)

Property 2-1

1. The SN representation is NOT unique;
2. Only total counting indicates info., \rightarrow position\&pattern = meaningless;
3. The $S N$ with N bit only represent the number in set $\{0 / N, 1 / N, 2 / N, \ldots,(N-$ 1)/N,N/N\} in total of $N+1$ numbers (= resolution);
4. Range $=[0,1]$ (but extendable by following)

Format to address the real number domain

Format	Number value	Number range	Relation to unipolar value p_{X}
Unipolar (UP)	N_{1} / N	$[0,1]$	p_{X}
Bipolar (BP)	$\left(N_{1}-N_{0}\right) / N$	$[-1,+1]$	$2 p_{X}-1$
Inverted bipolar (IBP)	$\left(N_{0}-N_{1}\right) / N$	$[-1,+1]$	$1-2 p_{X}$
Ratio of 1's to 0's	N_{1} / N_{0}	$[0,+\infty]$	$p_{X} /\left(1-p_{X}\right)$

Here, the inaccuracy is observed over data-representation itself \rightarrow resolution

What is stochastic computing

Definition

Given a bit stream " X " with length of N : " 1 " appearance counting $=\mathrm{N} 1$; " ${ }^{\prime} 0$ " appearance counting $=$ N0. $P_{X}=N_{1} / N$ or shortly, $X=P_{X}$
This bit stream is called stochastic number (SN)

What is stochastic computing

To calculate the "probability"

Given two stream of A and B, the logic gate " $A N D$ " performs multiplication of $Y=A x B$

See other examples:

Here, the inaccuracy is observed over calculation \rightarrow so far, we suffer from two types of inaccuracy

Why? = position\&pattern means something How? = make them "random" and uncorrelated

STOCHASTIC

Property 2-2

$$
P_{X \cdot Y}=P_{X} \cdot P_{Y}
$$

If and only if X and Y are random (Bernoulli) and independent (uncorrelated)

Outline

$>$ What is stochastic computing (SC)

- Mechanism of SC
- Elements of SC
- Implementation of SC
> Time based stochastic computing (TBSC)
- Mechanism of TBSC
- Hybrid TBSC
- Analysis

Elements of stochastic computing HW

Generating SN

It is different from generating random number. More than that.

Convert binary to SN

Convert SN to binary

Inaccuracy in SC has several distinct sources: random fluctuations in SN representation, similarities (correlations) among the numbers that are being combined, and physical errors that alter the numbers.

Generally, use long stream...

Preliminary, linear feedback shift register (LFSR)

Another (smaller SN generator)

Elements of stochastic computing HW

Generating SN

"weight" is attached to final bit stream from the binary radix. Quiz 2-2: explain why

Signal	Bit-stream	Value
L_{3}	0010101111000011	$8 / 16$
L_{2}	0101011110000110	$8 / 16$
L_{1}	1010111100001100	$8 / 16$
L_{0}	0101111000011001	$8 / 16$
W_{3}	0010101111000011	$8 / 16$
W_{2}	0101010000000100	$4 / 16$
W_{1}	1000000000001000	$2 / 16$
W_{0}	0000000000010000	$1 / 16$
x	1010101111011011	$11 / 16$

Time sequence

Elements of stochastic computing HW

Calculate SNs

ANG gate is used for multiplication; summation would be = ?? OR gate??

$Z_{\text {NXOR }}=$
$Z_{A N D}=X Y$
Multiplier for UP

$$
\begin{gathered}
\frac{Z_{N X O R}^{\prime}-1}{2}= \\
1-\frac{X^{\prime}-1}{2}-\frac{Y^{\prime}-1}{2}+2\left(\frac{X^{\prime}-1}{2}\right)\left(\frac{Y^{\prime}-1}{2}\right) \\
Z^{\prime}{ }_{N X O R}=X^{\prime} Y^{\prime} \quad \text { Multiplier for BP }
\end{gathered}
$$

Outline

$>$ What is stochastic computing (SC)

- Mechanism of SC
- Elements of SC
- Implementation of SC
> Time based stochastic computing (TBSC)
- Mechanism of TBSC
- Hybrid TBSC
- Analysis

Implementation of stochastic computing HW

Complex func.

Linear combination is achieved by multiplier and adders

But, for the complex NON-linear functions, the simple implementations are insufficient. The ONLY option is to "approximate" them by simple items.

1. Item expansion technologies: arbitrary non-linear function is approximated by, for instance, Taylor Expansion, Bernstein Polynomial etc.
2. Machine learning regression: refer to previous lecture
3. Special tech.s for stochastic

Implementation of stochastic computing HW

Complex func.

Non-linear functions are approximated by Bernstein Polynomial

In the mathematical field of numerical analysis, a Bernstein polynomial, named after Sergei Natanovich Bernstein, is a polynomial in the Bernstein form, that is a linear combination of Bernstein basis polynomials. [wikipedia]
$f(x) \approx \sum_{i=0}^{k} b_{k} B_{i, k}(x)$ where $B_{i, k}(x)=\binom{k}{i} x^{i}(1-x)^{k-i}$
for $S C, Z=\sum_{i=0}^{k} b_{k} B_{i, k}(X)$ where $B_{i, k}(X)=\binom{k}{i} X^{i}(1-X)^{k-i}$

Where degree k controls the accuracy of approximation. (see right)

Implementation of stochastic computing HW

Complex func.
Special technology by finite state machine (FSM) \rightarrow ONLY very few func.s are available

$$
X=B P ; Y=U P
$$

Example 2

$$
P_{Y} \approx \frac{e^{\frac{n}{2} P_{X}}-e^{-\frac{n}{2} P_{X}}}{e^{\frac{n}{2} P_{X}}+e^{-\frac{n}{2} P_{X}}}
$$

$$
X=B P ; Y=B P
$$

Implementation of stochastic computing HW

Summary		
	Good	Bad
Circuit size and power	Tiny arithmetic components	Many random number sources and stochasticbinary conversion circuits
Operating speed	Short clock periods Massive parallelism	Very long bit-streams
Result quality	High error tolerance Progressive precision	Low precision Random number fluctuations Correlation-induced inaccuracies
Design issues	Rich set of arithmetic components	Theory not fully understood Little CAD tool support at present

Error (inaccuracy)

Error type	Why	How
Approximation, Quantization	Non-linear target functions, Low-degree polynomial approximation, Low-precision constant number generation	Increase polynomial degree, Increase number of bits in constant number generation
Random fluctuation	Inherent randomness, Short bit-stream length	Increase bit-streams length, Use deterministic or low-discrepancy sequences
Insufficient randomness	High error tolerance Progressive precision	Increase random sources, De-correlate correlated signals, Use better number sources (larger LFSRs)
Enft arrarc	Environmental noise, Component variability,	Use circuit-level error-resilience techniques,

Outline

$>$ What is stochastic computing (SC)

- Mechanism of SC
- Elements of SC
- Implementation of SC
> Time based stochastic computing (TBSC)
- Mechanism of TBSC
- Hybrid TBSC
- Analysis

Time-Based Stochastic Computing

Original stochastic computing Counting probability of " 0 " or " 1 "

Conventional stochastic computing

Usually, like this:

Time-Based Stochastic Computing

Time-Based Stochastic Computing

implementation

Generate stochastic number in time-domain \rightarrow duty cycle

time (ns)

Time-Based Stochastic Computing

Time-Based Stochastic Computing

	$*$	Proposed Circuit
Technology	45 nm	180 nm
Strategies	time-based values	time-based values
Components (of SNG)	Comparator Ramp Generator Clock Generator	Current-starved Oscillator Neuron-MOS Inverter PWM Detector (optional)
Input	Analog Current	Analog Voltage
Speed (ns)	7 (mul.)	7 (mul.)
	7 (add.)	7 (add.)
Accuracy (\%)	98.6 (mul.)	96.6 (mul.)
	98.6 (add.)	96.7 (add.)
\# of trans.	967 (mul.)	140 (mul.)
	1512 (add.)	210 (add.)
Energy (pJ)	4.5 (mul.)	1.8 (mul.)
	6.8 (add.)	2.5 (add.)

[** H. Najafi et al., Time-encoded values for highly efficient stochastic circuits, IEEE Trans. VLSI Systems 2017

Outline

$>$ What is stochastic computing (SC)

- Mechanism of SC
- Elements of SC
- Implementation of SC
$>$ Time based stochastic computing (TBSC)
- Mechanism of TBSC
- Hybrid TBSC
- Analysis

Hybrid: stochastic + analog

Hybrid: stochastic + analog

Key idea:
In stochastic computing, we concern "probability". Then, why always use discrete fashion?

Hybrid: use continuous probability distribution instead of discrete Bernoulli test; integral instead of bit counting

Merits: short time; infinite range; easy for summation; light SNG

Demerit: almost no theory; circuit design expertise

Hybrid: stochastic + analog

implementation

(a)

(b)

(c)

Outline

$>$ What is stochastic computing (SC)

- Mechanism of SC
- Elements of SC
- Implementation of SC
> Time based stochastic computing (TBSC)
- Mechanism of TBSC
- Hybrid TBSC
- Analysis

Hybrid: stochastic + analog

Error analysis

X1*w1+X2*w2 contains four operands, full pattern test is impossible. Thus, sampling.

Hybrid: stochastic + analog

Error analysis

Errors also come from the analog side: process and temperature variations etc.

Hybrid: stochastic + analog

Error analysis

Errors also come from the analog side process and temperature variations etc.

End

Thank you very much.

